Rapidly growing demands for high-performance computing, powerful data processing, and big data necessitate the advent of novel optical devices to perform demanding computing processes effectively. Due to its unprecedented growth in the past two decades, the field of meta-optics offers a viable solution for spatially, spectrally, and/or even temporally sculpting amplitude, phase, polarization, and/or dispersion of optical wavefronts. In this review, we discuss state-of-the-art developments, as well as emerging trends, in computational metastructures as disruptive platforms for spatial optical analog computation. Two fundamental approaches based on general concepts of spatial Fourier transformation and Green’s function (GF) are discussed in detail. Moreover, numerical investigations and experimental demonstrations of computational optical surfaces and metastructures for solving a diverse set of mathematical problems (e.g., integrodifferentiation and convolution equations) necessary for on-demand information processing (e.g., edge detection) are reviewed. Finally, we explore the current challenges and the potential resolutions in computational meta-optics followed by our perspective on future research directions and possible developments in this promising area.