The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide-and receptor-dependent.Relaxin was first identified more than 90 years ago and subsequently shown to be a peptide hormone having a two-chain structure similar to insulin ( Fig. 1) (1). It has since been established that relaxin is a member of the relaxin peptide family, comprising a total of seven members in the human (2). These are the H1, 3 H2, and H3 relaxin peptides that are encoded by the three relaxin genes RLN1 to -3 and the insulin-like peptides INSL3 to -6 (insulin-like peptides 3-6). Phylogenetic analyses indicate that all of these relaxin family peptides evolved from a relaxin-3 (H3 relaxin equivalent) ancestral gene prior to the emergence of fish (3). In most mammals other than humans and higher primates, there are only two relaxin genes that encode relaxin and relaxin-3. The RLN1 gene in these species is equivalent to the RLN2 gene in humans (encoding H2 relaxin) and higher primates and encodes the relaxin peptide that is expressed by the corpus luteum and/or placenta (2). The function of the RLN1 gene in higher primates is unknown, and an H1 relaxin peptide has not been isolated.In contrast to the receptors for insulin and insulin-like growth factors I and II, which are tyrosine kinases, the receptors for relaxin family peptides are members of two unrelated branches of the G-protein-coupled recepto...