Abstract. Qualitative dérivâtes and derivatives, as well as qualitative symmetric dérivâtes and derivatives, are studied in the paper. Analogues of several results known for ordinary dérivâtes and derivatives are obtained in the qualitative setting.1. Introduction. The notions of qualitative limits, qualitative continuity, and qualitative derivatives were introduced by S. Marcus [13][14][15]. The purpose of the present paper is to examine qualitative differentiation and qualitative symmetric differentiation and, in particular, to present analogues of results known to hold for ordinary differentiation, symmetric differentiation, approximate differentiation, and approximate symmetric differentiation. Loosely speaking, qualitative differentiation and qualitative symmetric differentiation may be thought of as category analogues of approximate differentiation and approximate symmetric differentiation, where the set neglected near a point in the computation of difference quotients is of first category at the point in the former setting instead of density zero at the point as in the latter.We state our definitions in §2. In §3 we examine qualitative derivatives and dérivâtes. There we show that a qualitatively differentiable function on the real line is actually differentiable everywhere and obtain what may be viewed as qualitative analogues of the Denjoy-Young-Saks theorem [18]. In §4 we consider qualitative symmetric derivatives and dérivâtes. We show that with mild continuity restrictions on the primitive, a qualitative symmetric derivative must belong to Baire class one and actually be the symmetric derivative of a closely related function except at countably many points. A monotonicity theorem and related results are given.