Probabilistic theories aim at describing the properties of systems subjected to random excitations by means of statistical characteristics such as the probability density function ψ (pdf). The time evolution of the pdf of the response of a randomly excited deterministic system is commonly described with the transient Fokker-Planck-Kolmogorov equation (FPK). The FPK equation is a conservation equation of a hypothetical or abstract fluid, which models the transport of probability. This paper presents a generalized formalism for the resolution of the transient FPK equation using the well-known mesh-free Lagrangian method, Smoothed Particle Hydrodynamics (SPH).Numerical implementation shows notable advantages of this method in an unbounded state space: (i) the conservation of total probability in the state space is explicitly written, (ii) no artifact is required to manage far-field boundary conditions , (iii) the positivity of the pdf is ensured and (iv) the extension to higher dimensions is straightforward.Furthermore, thanks to the moving particles, this method is adapted for a large kind of initial conditions, even slightly dispersed distributions. The FPK equation is solved without any a priori knowledge of the stationary distribution; just a precise representation of the initial distribution is required.