Improvement of anthocyanin levels in husks and cobs of field corn may add economic value to corn coproducts in commercial production. This study aimed to evaluate the response to four cycles of modified mass selection (MMS) for yield, agronomic traits, total anthocyanin yield (TAY), total anthocyanin content (TAC), total phenolic content (TPC) and antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity assay (DPPH) and trolox equivalent antioxidant capacity assay (TEAC) in corn husk and cob of five purple field corn populations. The improved populations and check varieties were evaluated at two locations for two seasons in 2017/2018. Selection cycle contributed to a large portion of the total variations for TAC, TPC, DPPH and TEAC in corn husk and cob. All tested populations showed progress for days to anthesis, TAY, TAC, TPC, DPPH and TEAC across four cycles of selection. Lack of significant correlation between agronomic traits and anthocyanin concentrations suggested the independent segregation of these traits. MMS was successfully used to develop field corn populations with improved anthocyanin, antioxidant activities and early flowering without significant yield loss. The populations with the highest selection gains for anthocyanin in husk and cob were identified. Visual selection for dark purple husks and cobs boosted anthocyanin levels and antioxidant activity in selected populations.