Upselling is often a critical factor in revenue generation for businesses in the tourism and travel industry. Utilizing passenger data from a major international airline company, we develop the PAX (Passenger, Airline, eXternal) model to predict passengers that are most likely to accept an upgrade offer from economy to premium. Formulating the problem as an extremely unbalanced, cost-sensitive, supervised binary classification, we predict if a customer will take an upgrade offer. We use a feature vector created from the historical data of 3 million passenger records from 2017 to 2019, in which passengers received approximately 635,000 upgrade offers worth more than $422,000,000 U.S. dollars. The model has an F1-score of 0.75, outperforming the airline's current rule-based approach. Findings have several practical applications, including identifying promising customers for upselling and minimizing the number of indiscriminate emails sent to customers. Accurately identifying the few customers who will react positively to upgrade offers is of paramount importance given the airline 'industry's razor-thin margins. Research results have significant real-world impacts because there is the potential to improve targeted upselling to customers in the airline and related industries.