<p>This paper focused on approximating a second-order nonlinear hyperbolic optimal control problem. By introducing a new variable, the hyperbolic equation was converted into two parabolic equations. A second-order fully discrete scheme was obtained by combining the Crank-Nicolson formula with the finite element method. The error estimation for this scheme was derived utilizing the second-order sufficient optimality condition and auxiliary problems. To validate the effectiveness of the fully discrete scheme, a numerical example was presented.</p>