To explore the effect of different explosive charge height parameters on the bonding interface of titanium–aluminum multilayer composite plates during explosion welding, the smooth particle dynamics method (SPH method) was used to simulate the explosion welding of titanium–aluminum multilayer plates, reproducing the formation process of plasma jet and waveform bonding interface and obtaining the bonding surface conditions at various charge heights. Based on the simulation, experiments were conducted, and the bonding surface quality was verified through scanning electron microscopy (SEM). The elemental distribution of the binding interface was analyzed using an energy-dispersive spectrometer (EDS). The results show that the welding effect of the plate closer to the explosive is better during explosion welding. Within the weldable window, as the charge height increases, the waviness of the bonding interface transitions towards smaller and more continuous ripples, with continuous small ripples accompanied by vortex-like eddies indicating good welding conditions. When the charge height is too large, the plate may experience a brittle fracture, reducing the strength of the bonding interface. The welding effect is best when the charge height is 24 mm. Under a certain distance between the base and overlay plates, with the increase in charge height, the collision speed of the base plate also increases, increasing the pressure between the plates, causing changes in the shapes of the bonding interface ripples, and expanding the melting zone. Excessive collision speed and pressure also promote the generation of cracks, leading to a decrease in the strength of the composite material.