CM 2023
DOI: 10.18137/cardiometry.2022.25.897903
|View full text |Cite
|
Sign up to set email alerts
|

Analysis and Comparison for Innovative Prediction of COVID-19 using Logistic Regression Algorithm over the Decision Tree Algorithm with Improved Accuracy

Abstract: Aim: The major goal of this research is to increase the accuracy of innovation prediction and examine the COVID-19. Materials and Method: This study relied on data collected from Kaggle’s website and samples are divided into two groups, GROUP 1 (N=20) for Logistic regression and GROUP 2 (N=20) for Decision tree in accordance with the total sample size calculated using clinical.com by keeping 0.05 alpha error-threshold, 95% confidence interval, enrolment ratio as 0:1, and G power at 80%. It involves the softwar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?