Abstract-On-board processing (OBP), a paradigm that allows for manipulation of the signal at the satellite transponder, is being embraced by a large section of the satellite community. Exploiting OBP can lead to efficient implementation, bandwidth saving, lower redundancy, and better performance. Enabling processing aboard a satellite necessitates re-assessing the implementation of a number of signal processing techniques which, so far, have been ground-centric. In this work, we investigate the possibility of implementing signal predistortion (SPD) aboard a satellite having digital transparent processor (DTP). Such satellites employ transponders that allow for the implementation of limited functionalities in the digital domain. On-board predistortion can then be performed on the digitized data and can provide better performance compared to on-ground techniques. However, the conversion to the digital domain performed by an analogto-digital converter (ADC) introduces different types of noise. Among these, the clock jitter requires the implementation of estimation and compensation algorithms. In this paper we propose a reduced-complexity on-board signal predistortion algorithm capable of post-compensating the jitter introduced by the ADC, and pre-compensating the distortion generated by the amplifier.