Current state of the art, simulation methods to determine the frequency-, temperature-and humidity-depending stiffness and damping do not show an accurate prediction of the structural dynamics of short-fiber-reinforced thermoplastics. Thus, in the current work the new developed Arbitrary-Reconsidered-Double-Inclusion (ARDI) model has been used to describe the stiffness and damping. Thereby, a homogenization equation has been used to derive the transversal-isotropic stiffness and damping tensors. By rotating and weighting these tensors using orientation distribution functions (ODF), it is possible to create a material database. A validation of the developed ARDI model was performed on bending vibration specimens under variation of the fiber direction, temperature and humidity, to investigate the structural dynamics. In general, the comparison of the results of the simulation and experiments shows a good correlation of the eigenfrequencies and the amplitudes. The main differences in the simulation can be traced back to the used modelling of the damping behavior.