Although frequency range 2 (FR2) systems are an essential part of 5G-Advanced and future 3GPP releases, the mobility performance of multi-panel user equipment (MPUE) with hand blockage is still an area open for research and standardization. In this article, a comprehensive study on the mobility performance of MPUE with hand blockage is performed for conditional handover (CHO) and its potential enhancement denoted by fast conditional handover (FCHO). In contrast to CHO, in FCHO the MPUE can reuse earlier target cell preparations after each handover to autonomously execute subsequent handovers. This saves both the signaling overhead associated with the reconfiguration and re-preparation of target cells after each handover and reduces mobility failures. Results have shown that FCHO offers considerable mobility performance gains as compared to CHO for different hand blockage cases that are dependent on the hand position around the MPUE. For the worst-case hand blockage scenario, it is seen that mobility failures reduce by 10.5% and 19.3% for the 60 km/h and 120 km/h mobility scenarios, respectively. This gain comes at the expense of reserving the handover resources of an MPUE for a longer time given that the target cell configurations are not necessarily released after each handover. In this article, the longer resource reservation problem in FCHO is analysed and three different resource reservation optimization techniques are introduced. Results have shown that these optimization techniques not only reduce the resource reservation time but also significantly reduce the signaling overhead at the possible expense of a tolerable degradation in mobility performance.