Axial-flux permanent magnet synchronous machines (AF-PMSM) using printed circuit board (PCB) windings are attracting interest because of an increased demand for machines with thinner geometries. A critical element in designing these machines is the choice of its PCB winding which should ensure high-performance characteristics with an efficient use of the PCB surface. However, there is a gap in the knowledge regarding the performance of different PCB topologies. The research reported here is motivated by the need to compare common wave-type PCB windings stator topologies. Accordingly, overlapping parallel wave, non-overlapping radial wave and overlapping radial wave PCB winding topologies are assessed, using finite-element analysis, and compared based on their key performance characteristics such as the generated backelectromotive forces, inductances and electromagnetic torque. The PCB winding that provides the best torque production is then chosen and manufactured. Experimental tests on the prototyped PCB AF-PMSM provide validation.