Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction. Several types of embankment dams are used in the hydraulic engineering practice. However, the choice of a dam is individual for each hydraulic engineering project, as it takes account of specific features and natural conditions. This paper compares two types of rockfill dams (the one having a concrete face and the other having an asphalt-concrete diaphragm) in relation to the Mullalakh HPP on the Pskem River in the Republic of Uzbekistan. The dam height is 85 m. The comparison was performed from the standpoint of the dam performance in case of exposure to static forces and high seismicity. Materials and methods. The analysis of (1) the stress-strain state (SSS), (2) the stability of slopes exposed to regular and irregular load combinations was conducted for two types of dams. All calculations were performed in the two-dimensional domain. The analysis of the stress-strain state took account of the non-linear behavior of the soil ground and the contact interaction between structural elements. Seismic loads, included into the scope of irregular loads, were identified using the response spectrum method applied to particular periods and self-oscillation modes. Slope stability was analyzed with regard for the stress state of soils identified in the course of SSS calculations. Results. Each type of embankment dams has its specific features. The asphalt diaphragm dam is worse at perceiving high seismic loads. Its SSS during an earthquake features strength loss and emergence of soil discontinuity zones. The disadvantage of a concrete face dam is the insufficient safety of its anti-seepage element. Supplementary measures are needed to ensure the appropriate stress state of the face. Another finding is that the slopes of both types of dam do not demonstrate a sufficient stability factor, if the slope ratio equals to 1.5 during a 9-point earthquake. Conclusions. In high seismicity regions, a concrete faced dam demonstrates better performance than the asphalt diaphragm dam if both are exposed to static and seismic forces.
Introduction. Several types of embankment dams are used in the hydraulic engineering practice. However, the choice of a dam is individual for each hydraulic engineering project, as it takes account of specific features and natural conditions. This paper compares two types of rockfill dams (the one having a concrete face and the other having an asphalt-concrete diaphragm) in relation to the Mullalakh HPP on the Pskem River in the Republic of Uzbekistan. The dam height is 85 m. The comparison was performed from the standpoint of the dam performance in case of exposure to static forces and high seismicity. Materials and methods. The analysis of (1) the stress-strain state (SSS), (2) the stability of slopes exposed to regular and irregular load combinations was conducted for two types of dams. All calculations were performed in the two-dimensional domain. The analysis of the stress-strain state took account of the non-linear behavior of the soil ground and the contact interaction between structural elements. Seismic loads, included into the scope of irregular loads, were identified using the response spectrum method applied to particular periods and self-oscillation modes. Slope stability was analyzed with regard for the stress state of soils identified in the course of SSS calculations. Results. Each type of embankment dams has its specific features. The asphalt diaphragm dam is worse at perceiving high seismic loads. Its SSS during an earthquake features strength loss and emergence of soil discontinuity zones. The disadvantage of a concrete face dam is the insufficient safety of its anti-seepage element. Supplementary measures are needed to ensure the appropriate stress state of the face. Another finding is that the slopes of both types of dam do not demonstrate a sufficient stability factor, if the slope ratio equals to 1.5 during a 9-point earthquake. Conclusions. In high seismicity regions, a concrete faced dam demonstrates better performance than the asphalt diaphragm dam if both are exposed to static and seismic forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.