In the field of industrial buildings, notably within warehouse settings, the optimization of floor space emerges as a paramount concern. The deployment of equipment facilitating continuous transport is mandated to not only augment throughput but also to economize on spatial allocation. Within this spectrum, continuous vertical conveyors, particularly of the paternoster variety, have been adopted as a quintessential solution. This study delineates the design intricacies of a paternoster continuous vertical conveyor, elucidating the methodology employed in calculating its maximal throughput, movement resistance, and the requisite power for its electric motor. Through a rigorous analytical approach, the performance of the paternoster conveyor is meticulously evaluated and juxtaposed against alternative continuous vertical conveyor systems. The findings underscore the paternoster conveyor's efficacy in achieving high throughput efficiency while conserving space, thus reaffirming its utility in industrial warehousing. The evaluation employs comparative metrics to highlight the paternoster system's superiority in specific operational parameters. This analysis contributes to the corpus of knowledge by providing a comprehensive examination of paternoster conveyors, thereby aiding in the selection of efficient transport solutions within the constraints of warehouse space optimization.