In this paper we exploit a basic type of three-stage Distributed Bragg Reflector (DBR) laser that by adjusting its input driving currents in the tri-electrode to generate signals with wavelengths that are in the International Telecommunication Union (ITU)-Band. Many driving current combinations can generate the same ITU wavelength; we will consider in this paper the situation when the input currents are restricted within certain range and to find for all those input current combinations that generate output signals with wavelengths locating in the ITU defined wavelength range. And we will through simulations to determine which set of current combinations will generate the shortest switching time. We will also propose a new current control method, when we know in advance the signal will be switched to certain band, to determine the best current switching combinations that resulting in faster and shorter switching time than that of the conventional system structure which has the drawback that it has only one fixed current combinations for each channel.