Now days, the establishment of spacers is in wide usage in three-phase Gas Insulated Busduct (GIB) for providing mechanical support and better insulation to the conductors. The region of the intersection of SF6 gas, enclosure end and the spacer is one of the weakest links in GIB, so the major concentration is done on minimization of electric field stress at this junction by using Functionally Graded Material (FGM) technique. The other incidents of insulation failures are due to several defects like depression, delamination etc. reduces the dielectric strength of the spacers. In this paper, an FGM post type spacer has been designed for a three-phase GIB under depression and further electric field stress at Triple Junction (TJ) is reduced by introducing a metal insert (MI) nearer to the TJ. Several filler materials are used as doping materials for obtaining different permittivity values using FGM technique to achieve uniform electric field stress. Simulation is carried out for the designed spacer at various operating voltages with different types of FGM gradings. The effect of depression with different dimensions and positions is analyzed before and after inserting MI to the FGM post type spacer in three-phase GIB.