The real-time scheduling theory provides analytical methods to assess the temporal predictability of embedded systems. Nevertheless, their use is limited in a Model-Based Systems Engineering approach. In fact, the large number of applicability conditions makes the use of real-time scheduling analysis tedious and error-prone. Key issues are left to the engineers: when to apply a real-time scheduling analysis? What to do with the analysis results? This article presents an approach to systematize and then automate the analysis of non-functional properties in Model-Based Systems Engineering. First, preconditions and postconditions define the applicability of an analysis. In addition, contracts specify the analysis interfaces, thereby enabling to reason about the analysis process. We present a proof-of-concept implementation of our approach using a combination of constraint languages (REAL for run-time analysis) and specification languages (Alloy for describing interfaces and reasoning about them). This approach is experimented on architectural models written with the Architecture Analysis and Design Language (AADL).