Electrophysiology offers a high-resolution method for real-time measurement of neural activity. The vast amount of data generated requires efficient storage and sophisticated processing to extract neural function and network dynamics. However, analysis is often challenging due to the need for multiple software tools with different runtime dependencies. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage, complicating data management, sharing, and backup. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the analysis algorithms to serve as scalable and flexible building blocks within the pipeline. We designed graphical user interfaces and command line tools to remove the requirement of programming skills. The interactive visualizations provide multi-modality information on various neuronal features. This cloud-based pipeline is an efficient solution for electrophysiology data processing, the limitations of local software tools, and storage constraints. It simplifies the electrophysiology data analysis process and facilitates understanding neuronal activity. In this paper, we applied this pipeline on two types of cultures, cortical organoids and ex vivo brain slice recordings.