Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles-their wavelength-is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film.elastic sheets | wrinkles | curved topography W rinkles emerge in response to confinement, allowing a thin sheet to avoid the high energy cost associated with compressing a fraction e Δ of its length ( Fig. 1) (1-7). The wavelength, λ, of wrinkles reflects a balance between two competing effects: the bending resistance, which favors large wavelengths, and a restoring force that favors small amplitudes of deviation from the flat, unwrinkled state. Two such restoring forces are those due to the stiffness of a solid foundation or the hydrostatic pressure of a liquid subphase (Fig. 1A). Cerda and Mahadevan (1) realized that a tension in the sheet can give rise to a qualitatively similar effect ( Fig. 1B) and thereby proposed a universal law that applies in situations where the wrinkled sheet is nearly planar and subjected to uniaxial loading:Here the bending modulus B = Et 3 =½12ð1 − Λ 2 Þ (with E the Young's modulus, t the sheet's thickness, and Λ the Poisson ratio), whereas out-of-plane deformation is resisted by an effective stiffness, K eff , which can originate from a fluid or elastic substrate, an applied tension, or both. Eq. 1 is appealing in its simplicity, but it applies only for patterns that are effectively one-dimensional. In particular, it does not apply when the stress varies spatially or when there is significant curvature along the wrinkles. Here, we study two experimental settings in which these limitations are crucial: (i) indentation of a thin polymer sheet floating on a liquid, which leads to a horn-shaped surface with negative Gaussian curvature, and (ii) a circular sheet attached to a curved liquid meniscus with positive Gaussian curvature. In both cases, wrinkle patterns live on a curved surface, show spatially varying wavelengths, and are limited in spatial extent. The extent of finite wrinkle patterns in a variety of such 2D situations has recently been addressed (6,(8)(9)(10)(11) and was found to depend largely on external forces and boundary conditions. Howeve...