In this short note we prove that the functional I : W1,p(J;R) → R defined by
is sequentially weakly lower semicontinuous in W1,p(J,R) if and only if the symmetric part W+ of W is separately convex. We assume that W is real valued, continuous and bounded below by a constant, and that J is an open subinterval of R. We also show that the lower semicontinuous envelope of I cannot in general be obtained by replacing W by its separately convex hull Wsc.