SummarySynapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy.
Key words: Neural development, Neuromuscular junction, Retrograde signaling, Synapse formation
IntroductionThe brain contains billions of nerve cells, or neurons, which receive and integrate signals from the environment, and which govern the body's responses. Nervous system activity is made possible by synapses, contacts formed either between neurons or between a neuron and a target cell. Synapses are asymmetric structures in which neurotransmitter molecules are released from the presynaptic membrane and activate receptors on the postsynaptic membrane, thus establishing neuronal communication. As such, synapses are fundamental units of neural circuitry and enable complex behaviors. The neuromuscular junction (NMJ) is a type of synapse formed between motoneurons and skeletal muscle fibers. Large and easily accessed experimentally, this peripheral synapse has contributed greatly to the understanding of the general principles of synaptogenesis and to the development of potential therapeutic strategies for muscular disorders. The NMJ uses different neurotransmitters in different species; for example, acetylcholine (ACh) in vertebrates and glutamate in Drosophila, both of which are excitatory and cause muscle contraction. In Caenorhabditis elegans, there are two types of NMJs: at excitatory NMJs, ACh causes muscle contraction, whereas inhibitory NMJs release g-aminobutyric acid (GABA) to cause muscle relaxation. Motor nerve terminals differentiate to form presynaptic active zones, where synaptic vesicles dock and release neurotransmitters. On the apposed postsynaptic membranes, neurotransmitter receptors are packed at high densities. Aided by genetic techniques and by the use of suitable animal models, including rodents, zebrafish, Drosophila and C. elegans, studies in the past decade have brought significant progress, not only in identifying components present in pre-and postsynaptic membranes, but also in understanding the mechanisms that underpin NMJ assembly. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues from motor nerves and muscle fibers. Readers are referred to other outstanding reviews for a broad view of NMJ development (see Froehner, 1993;Hall and Sanes, 1993;Kummer et al., 2006;Salpeter and Loring, 1985;Schaeffer et al., 2001).
NMJ formati...