A lattice-indexed family of stochastic processes has quasi-cycle oscillations if its otherwise-damped oscillations are sustained by noise. Such a family performs the reaction part of a discrete stochastic reaction-diffusion system when we insert a local Mexican Hat-type, difference of Gaussians, coupling on a one-dimensional and on a two-dimensional lattice. Quasi-cycles are a proposed mechanism for the production of neural oscillations, and Mexican Hat coupling is ubiquitous in the brain. Thus this combination might provide insight into the function of neural oscillations in the brain. Importantly, we study this system only in the transient case, on time intervals before saturation occurs. In one dimension, for weak coupling, we find that the phases of the coupled quasi-cycles synchronize (establish a relatively constant relationship, or phase lock) rapidly at coupling strengths lower than those required to produce spatial patterns of their amplitudes. In two dimensions the amplitude patterns form more quickly, but there remain parameter regimes in which phase synchronization patterns form without being accompanied by clear amplitude patterns. At higher coupling strengths we find patterns both of phase synchronization and of amplitude (resembling Turing patterns) corresponding to the patterns of phase synchronization. Specific properties of these patterns are controlled by the parameters of the reaction and of the Mexican Hat coupling.