The existing MEMS bionic vector hydrophone has the problems of low-sensitivity and narrow-working band, and the sensitivity and working bandwidth cannot be improved simultaneously by changing the single microstructural parameter. In this paper, the MEMS bionic vector hydrophone microstructural parameters (length, width and height of cantilever, side length of the center block, height and radius of the rigid cylinder) have been optimized simultaneously to obtain a higher sensitivity at the almost same working bandwidth. Firstly, through the mechanical analysis of the microstructure, the objective function and feasible region are established to optimize the parameters of the microstructure, and a set of optimized parameters is obtained. Secondly, the optimized structure is verified by ANSYS simulation, and then, the optimized four-beam structure is fabricated by the MEMS manufacturing technology. Finally, these two kinds of hydrophones (the previous one and the optimized one) are produced, and their performance tests are carried out. The testing results show that the performances of the optimized hydrophone have been greatly improved, exhibiting a receiving sensitivity of −181.2 dB@1 kHz (increasing by 6.5 dB, 0 dB reference 1 V/μ Pa), the frequency response ranging from 20 Hz to 1 kHz which is the same working bandwidth as before, and a good dipole directivity. The optimization researches in this paper provide a method and idea for the performance improvement of the following MEMS vector hydrophone.