In China, as the major source of energy consumption and air pollutant emissions, the power industry is not only the principal force that bears the responsibility of national emission reduction targets but also a breakthrough that reflects the effectiveness of emission reduction. In this study, based on the integrated MARKAL-EFOM system (TIMES) model and scenario analysis method, a bottom-up energy system optimization model for the power industry was established, and four scenarios with different constraints were set up to predict and analyze the power demand and the energy consumption structure. Emission characteristics, emission reduction characteristics, and emission reduction cost of sulfur dioxide (SO2), nitrogen oxide (NOX), particulate matter 2.5 (PM2.5), and mercury (Hg) were quantitatively studied. Finally, for the environmentally friendly development and optimal adjustment of power production systems in China, the control path in the power industry that is conducive to the emission reduction of air pollutants was obtained, which is of great significance for the ultimate realization of climate friendliness. The results demonstrate that from 2020 to 2050, the power demand of the terminal departments will increase, with the composition significantly changed. The focus of power demand will change from industry to the service industry gradually. If no additional targeted emission reduction or adjustment policies are added in the power industry, the primary energy and air pollutant emissions will increase significantly, putting great pressure on resources and the environment. For the emission reduction of air pollutants, the promotion effect of emission reduction measures, such as the implementation and promotion of non-fossil fuels, is restricted. The power industry can introduce and maximize the best available technologies while optimizing the structure of energy consumption to realize efficient emission reduction of air pollutants and energy conservation. In 2030, emissions will reach peak values with reasonable emission reduction cost. This has the additional effect of abating energy consumption and preventing deterioration of the ecological environment, which is of profound significance for the ultimate realization of climate friendliness.