We consider two mathematical models which describe the antiplane shear deformation of a piezoelectric cylinder in adhesive contact with a rigid foundation. The material is assumed to be electro-viscoelastic in the first model and electro-elastic in the second one. In both models the process is quasistatic, the foundation is electrically conductive and the adhesion is described with a surface variable, the bonding field. We derive a variational formulation of the models which is given by a system coupling two variational equations for the displacement and the electric potential fields, respectively, and a differential equation for the bonding field. Then we prove the existence of a unique weak solution to each model. We also investigate the behavior of the solution of the electro-viscoelastic problem as the viscosity converges to zero and prove that it converges to the solution of the corresponding electro-elastic problem.