The aim of this study was to investigate the fragmentation behavior induced by low-energy collision-induced dissociation (LE-CID) of four selected antioxidants applied in lubricants, by two different types of ion trap mass spectrometers: a three-dimensional ion trap (3D-IT) and a linear IT (LIT) Orbitrap MS. Two sterically hindered phenols and two aromatic amines were selected as model compounds representing different antioxidant classes and were characterized by positive-ion electrospray ionization (ESI) and LE-CID. Various types of molecular ions (e.g. [M](+•) , [M + H](+) , [M + NH(4) ](+) or [M + Na](+) ) were used as precursor ions generating a significant number of structurally relevant product ions. Furthermore, the phenolic compounds were analyzed by negative-ion ESI. For both IT types applied for fragmentation, the antioxidants exhibited the same unusual LE-CID behavior: (1) they formed stable radical product ions and (2) CC bond cleavages of aliphatic substituents were observed and their respective cleavage sites depended on the precursor ion selected. This fragmentation provided information on the type of structural isomer usually not obtainable for branched aliphatic substituents utilizing LE-CID. Comparing the two instruments, the main benefit of applying the LIT-Orbitrap was direct access to elemental composition of product ions enabling unambiguous interpretation of fragmentation trees not obtainable by the 3D-IT device (e.g. loss of isobaric neutrals). It should be emphasized that the types of product ions formed do not depend on the type of IT analyzer applied. For characterizing degradation products of antioxidants, the LIT-Orbitrap hybrid system, allowing the determination of accurate m/z values for product ions, is the method of choice.