2014
DOI: 10.1016/j.ress.2014.01.018
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
18
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
7
2

Relationship

3
6

Authors

Journals

citations
Cited by 38 publications
(19 citation statements)
references
References 13 publications
0
18
0
1
Order By: Relevance
“…WIM merupakan sebuah solusi inovatif dalam manajemen lalu lintas yang memungkinkan kendaraan ditimbang pada saat dalam perjalanan, membantu mengendalikan jumlah kendaraan yang mengalami kelebihan beban di jalan, meningkatkan keselamatan dijalan raya.WIM terdiri dari weight sensor system dan antar muka komputer untuk deteksi, pengambilan, perhitungan serta analisis data [10,11]. Terdapat berbagai macam sensor yang telah dikembangkan untuk menganalisis sebuah berat kendaraan agar dapat menghasilkan data lalu lintas, salah satunya adalah sensor Load Cell [12,14]. Gambar…”
Section: Weigh In Motionunclassified
“…WIM merupakan sebuah solusi inovatif dalam manajemen lalu lintas yang memungkinkan kendaraan ditimbang pada saat dalam perjalanan, membantu mengendalikan jumlah kendaraan yang mengalami kelebihan beban di jalan, meningkatkan keselamatan dijalan raya.WIM terdiri dari weight sensor system dan antar muka komputer untuk deteksi, pengambilan, perhitungan serta analisis data [10,11]. Terdapat berbagai macam sensor yang telah dikembangkan untuk menganalisis sebuah berat kendaraan agar dapat menghasilkan data lalu lintas, salah satunya adalah sensor Load Cell [12,14]. Gambar…”
Section: Weigh In Motionunclassified
“…In [24] the same data coming from a WIM installation is input to model multidimensional distribution of axle loads together with other related quantities. A thorough investigation of dependencies between these quantities through a copula representation is presented.…”
Section: Traffic and Load Datamentioning
confidence: 99%
“…As only the mechanism of fatigue for orthotropic steel bridges is investigated, loading coming from fluctuating stresses caused by vehicles is in general the most important factor and is seen as a random variable whose distribution is yearly stationary. The nature of traffic intensity influencing the loading behaviour is also stochastic [24]. Both distributions of loading and traffic are computed given sample distributions bootstrapped from WIM data.…”
Section: Traffic and Load Datamentioning
confidence: 99%
“…Therefore, strains are measured on other locations and the measurements are compared with the results of a finite element model of the bridge deck. The axle loads applied onto the model are obtained from weigh in motion (WIM) measurements approximately 50 km away from the bridge (see Morales-Nápoles & Steenbergen, 2014). The stress ranges obtained from the measurements at the bridge were approximately 20% lower than the stress ranges obtained by the finite element model.…”
Section: Loadingmentioning
confidence: 99%