We investigate the unusual H
$\alpha$
features found towards the Scutum Supershell via recent arc-minute and arc-second resolution imaging. These multi-degree features resemble a long central spine ending in a bow-shock morphology. We performed a multi–wavelength study in [S II] optical, radio continuum, infrared continuum, Hi, CO, X-ray, and gamma-ray emissions. Interestingly, we found the Galactic worm GW 16.9−3.8 Hi feature appears within the Scutum Supershell, and likely influences the spine morphology. Furthermore, the rightmost edge of the bow-shock H
$\alpha$
emission overlaps with [S II] line emission, 4.85 GHz radio, and both 60 and 100
$\mu$
m infrared continuum emissions, suggesting some potential for excitation by shock heating. We estimated the photo-ionisation from O-type and B-type stars in the region (including those from the OB associations Ser OB1B, Ser OB2, and Sct OB3) and found that this mechanism could supply the excitation to account for the observed H
$\alpha$
luminosity of the spine and bow-shock of
$\sim$
1–2
$\times 10^{36}\,\mathrm{erg\,s}^{-1}$
(d/2.5 kpc)
$^2$
. Recent MHD simulations by Drozdov et al. (2022) demonstrate the potential for supernova events to drive outflow and bow-shock types of features of the same energetic nature and physical scale as the H
$\alpha$
emission we observe here. While this clearly requires many supernova events over time, we speculate that one contributing event could have come from the presumably energetic supernova (hypernova) birth of the magnetar tentatively identified in the X-ray binary LS 5039.