Climate change and water scarcity are significant global issues both currently and in the future. Investigating the changes in industrial water usage under this backdrop holds crucial guidance for enabling adaptive changes within industries. It offers methods and case support for assessing the impact of climate on the water usage processes of industrial enterprises as well. This study employed a physical model to examine the impact of climate factors on the primary water consumption processes of a selected case of a coal-fired power plant. Additionally, by utilizing the ScenarioMIP experimental outcomes from CMIP6 models, the future water consumption processes were predicted under four different SSPs-RCPs scenarios. A relevant LSTM neural network was constructed based on the primary water consumption calculation to establish connections between the power generation process, meteorological process, water consumption process, and water intake process. Findings from the study reveal that the annual average primary water consumption showed a decreasing trend in different SSPs-RCPs scenarios. Specifically, there were reductions of 1600, 5300, 9000, and 11,400 t/year in each respective scenario from SSP1–2.6 to SSP5–8.5. Conversely, the water intake exhibited a gradual increase, with increments of 2000, 5600, 9200, and 10,000 t/year, respectively. Moreover, the impact of climate change on evaporation showed an annual decrease of less than 0.056%, while the increase in water intake was below 0.044%. Under the SSPs-RCPs scenarios, both water intake and consumption exhibited a gradually increasing trend with fluctuations ranging from 1–2.6 to 5–8.5. However, the annual trends remained relatively stable. It is crucial to acknowledge that climate change has amplified the uncertainty surrounding water intake and consumption. Industrial enterprises should proactively ensure the stability of their production processes in response to climate change.