In the current context of global communications, HF (High Frequency) NVIS (Near Vertical Incidence Skywave) data networks can be of strategic importance, providing short- and medium-range communication capabilities independent of terrestrial configuration and existing conventional communications infrastructure. They are essential in critical conditions, such as natural disasters or conflicts, when terrestrial networks are unavailable. This paper investigates the development of such systems for HF NVIS data communications by introducing a customized Orthogonal Frequency Division Multiplexing (OFDM) protocol with parameters adapted to HF ionospheric propagation, implemented on Software-Defined Radio (SDR) systems, which provide extensive configurability and high adaptability to varying HF channel conditions. This work presents an innovative approach to the application of OFDM narrow-channel aggregation in the HF spectrum, a technique that significantly enhances system performance. The aggregation enables a more efficient utilization of the available spectrum and an increase in the data transmission rate, which represents a substantial advancement in NVIS communications. The implementation was realized using an SDR system, which allows flexible integration of the new OFDM protocol and dynamic adaptation of resources. The work also includes the development of a messaging application capable of using this enhanced HF communication system, taking advantage of the new features of channel aggregation and SDR flexibility. This application demonstrates the applicability of the protocol in real-world scenarios and provides a robust platform for data transmission under conditions of limited access to other means of communication. Thus, this study contributes to the technological advancement of NVIS communications and opens new research and deployment directions in HF communications.