Apolipoprotein B-100 (apoB-100) is the major protein constituent of human plasma low-density lipoproteins (LDL). On the basis of its amino acid sequence [Chen, S.-H., Yang, C.-Y., Chen, P.-F., Setzer, D., Tanimura, M., Li, W.-H., Gotto, A. M., Jr., & Chan, L. (1986) J. Biol. Chem. 261, 12918-12921], apo B-100 is one of the largest monomeric proteins known with a calculated molecular weight of 512937. Heparin binds to the LDL surface by interacting with positively charged amino acid residues of apoB-100, forming soluble complexes in the absence of divalent metals and insoluble complexes in their presence. The purpose of this study was to isolate and characterize the heparin-binding domain(s) of apoB-100. Human plasma LDL were fragmented with cyanogen bromide (CNBr). After delipidation and reduction-carboxymethylation, the CNBr peptides were fractionated by sequential chromatography on DEAE-Sephacel, Mono S, and high reactive heparin (HRH) AffiGel-10; HRH was purified by chromatography of crude bovine lung heparin on LDL AffiGel-10. Heparin-binding peptides were further purified by reverse-phase high-performance liquid chromatography. Heparin-binding activity was monitored by a dot-blot assay with 125I-HRH. The amino-terminal sequences of four CNBr heparin-binding peptides (CNBr-I-IV) were determined. CNBr-I-IV correspond to residues 2016-2151, 3109-3240, 3308-3394, and 3570-3719, respectively, of the amino acid sequence of apoB-100. Each CNBr peptide contains a domain(s) of basic amino acid residues which we suggest accounts for their heparin-binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)