The causes of delamination and porosities during press forming of pre-consolidated flat laminates (blanks) made of carbon fiber-reinforced poly(ether ketone ketone) (PEKK) were addressed in this study. In particular, the quality of the blank laminate was investigated before and after infrared heating. The consolidation quality was evaluated by thickness measurements, non-destructive inspection (NDI), and optical microscopy. The experimental results confirmed that deconsolidation phenomena can be related to residual stresses formed during blank forming in an autoclave, then released during infrared heating (IR) of the blank, determining most of the defects in IR heated blanks. These defects, generated at the pre-heating stage, were not fully removed in the consolidation stage of the press forming process. An annealing treatment, performed on autoclave-consolidated blanks above the glass transition temperature of the matrix, was proposed to reduce the formation of defects during IR heating. The stress relaxation phenomena during annealing were modelled using a simple viscoelastic model.