To examine global changes in breast heterogeneity across different states, we determined the single-cell transcriptomes of > 340,000 cells encompassing normal breast, preneoplastic BRCA1 +/tissue, the major breast cancer subtypes, and pairs of tumors and involved lymph nodes. Elucidation of the normal breast microenvironment revealed striking changes in the stroma of post-menopausal women. Single-cell profiling of 34 treatmentnaive primary tumors, including estrogen receptor (ER) + , HER2 + , and triple-negative breast cancers, revealed comparable diversity among cancer cells and a discrete subset of cycling cells. The transcriptomes of preneoplastic BRCA1 +/tissue versus tumors highlighted global changes in the immune microenvironment. Within the tumor immune landscape, proliferative CD8 + T cells characterized triple-negative and HER2 + cancers but not ER + tumors, while all subtypes comprised cycling tumor-associated macrophages, thus invoking potentially different immunotherapy targets. Copy number analysis of paired ER + tumors and lymph nodes indicated seeding by genetically distinct clones or mass migration of primary tumor cells into axillary lymph nodes. This large-scale integration of patient samples provides a highresolution map of cell diversity in normal and cancerous human breast.