This article describes gyroscopes and their effects in various fields of everyday life. Gyroscopic effect is ability (tendency) of the rotating body to maintain a steady direction of its axis of rotation. The gyroscopes are rotating with respect to the axis of symmetry at high speed. Gyroscopic effect is related to all rotating mechanisms (wheels, gears, shafts, rotors, bicycles, motorcycles, children's toys...). In some cases, we want to enhance the gyroscopic effect (for stabilization, energy accumulation). Stabilization effect is mainly used for two-wheeled vehicles. It can be also used on ships and boats, where big wheel is rotating and preventing the boat to overturn. Gyroscopic effects can help with energy accumulation. The bigger rotating speed is achieved the bigger amount of energy is stored. When the gyroscope is well designed the efficiency can be much higher than in the batteries. In other cases we want to suppress or compensate it (in case of the direction change of the rotating device). This is mainly about the planes. When the pilot of the plane needs to change the heading then during the left turn the plane will go up and during the right turn it goes down. The use of gyroscopes is important in various modes of transportation. We describe different usage of gyroscopes in transport and logistics, especially gyrocompass (ships and planes-advantages: no influence by ferromagnetic materials, heading to the true North, disadvantages: errors caused by rapid changes in course, speed and latitude); attitude and heading indicators (plane); pendulous integrating gyroscopic accelerometer (rocketry); gyrostat-control moment gyroscope (space-stations, satellites and probes); MEMS gyroscope (automotive, entertainment, robots, etc.).