Objectives: Cortisol is a glucocorticoid hormone produced through activation of the hypothalamic pituitary adrenal axis. It is known as the "stress hormone" for its primary role in the body's stress response and has been the focus of much modern clinical research. Within archaeology, only a few studies have analyzed cortisol in human remains and these have been restricted to hair (Webb et al., 2010; Webb, White, van Uum, & Longstaffe, 2015a; Webb, White, van Uum, & Longstaffe, 2015b). This study examines the utility of dentine and enamel, which survive well archaeologically, as possible reservoirs for detectable levels of cortisol. Materials and methods: Then, 69 teeth from 65 individuals from five Roman and Post-Roman sites in France were tested via competitive enzyme-linked immunosorbent assay (ELISA) to assess and quantify the cortisol concentrations present within tooth dentine and enamel. Results: In both tooth dentine and enamel, detectable concentrations of cortisol were identified in multiple teeth. However, concentrations were low and not all teeth yielded results that were measurable through cortisol ELISA. Differences in cortisol values between dentine and enamel could suggest different uptake mechanisms or timing. Discussion: These results suggest that cortisol is incorporated within tooth structures and merits further investigation in both modern and archaeological contexts. Analysis of the results through liquid chromatographic-mass spectrometry would verify current results and might yield values that could be better integrated with published cortisol studies. Future studies of cortisol in tooth structures would greatly expand the research potential of cortisol in the past and could have implications for studies of human stress across deep time.