Knowledge of the behavior of cuprous ions (monovalent copper ion: Cu(I)) in a copper sulfate plating bath is important for improving the plating process. We successfully developed a method to quantitatively and easily measure Cu(I) in a plating solution and used it for evaluation of the solution. In this paper, a quantitative absorption spectrum measurement and a time-resolved injection measurement of Cu(I) concentrations by a color reaction are described. This procedure is effective as a method to reproduce and elucidate the phenomenon occurring in the plating bath in the laboratory. First, the formation and accumulation process of Cu(I) in solution by electrolysis of a plating solution is shown. The amount of Cu(I) in the solution is increased by electrolysis at higher current values than the usual plating process. For the determination of Cu(I), BCS (bathocuproinedisulfonic acid, disodium salt), a reagent that selectively reacts with Cu(I), is used. The concentration of Cu(I) can be calculated from the absorbance of the Cu(I)-BCS complex. Next, the time measurement of the color reaction is described. The color reaction curve of Cu(I) and BCS measured by the injection method can be decomposed into an instantaneous component and a delay component. By analysis of these components, the holding structure of Cu(I) can be clarified, and this information is important when predicting the quality of the plating film to be produced. This method is used to facilitate the evaluation of the plating bath in the production line. Video Link The video component of this article can be found at https://www.jove.com/video/59376/ 12,13. In the first part of this protocol, a method of accelerating the Cu(I) formation in a copper sulfate plating solution in a model experimental system and the quantitative measurement of the Cu(I) concentration in a plating solution are described. This is fundamental to clarify the process of formation and accumulation of Cu(I) in the plating bath. Further, it was shown that the color reaction of Cu(I) and BCS can be divided into rapid reaction components and relatively slow reaction components. This increases the uncertainty in the absorbance measurement. To overcome this problem, we developed a method of measuring reaction curves by an injection method 14,15. The second part shows the measurement of Cu(I) based on the injection method. By analyzing the components obtained by the injection method, it is possible to approximate the understanding of the Cu(I) formation mechanism and holding structure in solution. Conventionally, it has been claimed that Cu(I) in a plating solution is instantly oxidized to cupric ions (Cu(II)). We have confirmed that there are several millimoles (mmol/L) of Cu(I) in the plating bath of the production line 12. According to this experiment method, the accumulation of Cu(I) similar to the plating bath can be reproduced even in the beaker of the laboratory. This is a fundamental technology to elucidate the Cu(I)