The escalating demand for cost-effective, flexible, and solution-processed materials in infrared (IR) photodetection presents a compelling alternative to current epitaxially grown optoelectronic technology. Colloidal quantum dots (CQDs) have emerged as a versatile platform for optoelectronic device fabrication, offering affordability, low-temperature synthesis, and scalability. Specifically, mercury chalcogenide CQDs exhibit notable intraband absorption in the mid-IR region. In this study, we explore an intraband HgSe-HgTe CQD photodetector structure tailored for mid-IR light detection. Through numerical optimization, we engineer detectivity by varying key design parameters-the film doping density, CQD diameter, and number of periods in the active layer-under different temperatures and biases. Results indicate that, at 60 K and 1 V bias, our optimally designed HgSe-HgTe CQD IR photodetector attains a peak detectivity of 8.14 × 10 10 Jones for a film doping density of 10 19 cm −3