Cloud computing is a ubiquitous network access model to a shared pool of configurable computing resources where available resources must be checked and scheduled using an efficient task scheduler to be assigned to clients. Most of the existing task schedulers, did not achieve the required standards and requirements as some of them only concentrated on waiting time or response time reduction or even both neglecting the starved processes at all. In this paper, we propose a novel hybrid task scheduling algorithm named (SRDQ) combining Shortest-JobFirst (SJF) and Round Robin (RR) schedulers considering a dynamic variable task quantum. The proposed algorithms mainly relies on two basic keys the first having a dynamic task quantum to balance waiting time between short and long tasks while the second involves splitting the ready queue into two sub-queues, Q1 for the short tasks and the other for the long ones. Assigning tasks to resources from Q 1 or Q 2 are done mutually two tasks from Q 1 and one task from Q 2 . For evaluation purpose, three different datasets were utilized during the algorithm simulation conducted using CloudSim environment toolkit 3.0.3 against three different scheduling algorithms SJF, RR and Time Slice Priority Based RR (TSPBRR) Experimentations results and tests indicated the superiority of the proposed algorithm over the state of art in reducing waiting time, response time and partially the starvation of long tasks.