2017
DOI: 10.4236/nr.2017.812047
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Digital Elevation Model and LNDSAT Data Using Geographic Information System for Soil Mapping in Urban Areas

Abstract: This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the morphometric parameters (terrain attributes: TAs). This aims to check its suitability for digital soil mapping (DSM) and survey in urban areas at the target scale 1:50,000. This scale represents the standard scale level for compiling soil inventories within all German states. The study is conducted o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2019
2019
2020
2020

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 48 publications
0
3
0
1
Order By: Relevance
“…Adanya kesamaan tersebut menandakan ketiga metode ini berpotensi untuk diintegrasikan dalam rangka pengelolaan SDAL. Open data menyediakan beragam data dasar yang dapat diolah lebih lanjut untuk berbagai keperluan, misalnya citra satelit multi-spektral (Landsat, MODIS, CBERS, Sentinel), Synthetic Aperture Radar (SAR), Digital Elevation Model (DEM), jaringan jalan, batimetri, peta topografi (rupa bumi), polusi udara, kependudukan, kejahatan dan lain sebagainya (Samanta, et al, 2011;Dede, et al, 2017;Mohamed, 2017;. Di tangan pihak yang mampu melakukan beragam analisis konvensional dan spasial, open data dapat menghasilkan banyak data maupun informasi berharga untuk beragam keperluan pengambilan keputusan (Hu, et al, 2017;Rusli et al, 2014).…”
Section: Keterbatasan Integrasi Dan Solusinya Dalam Pengelolaan Sdalunclassified
“…Adanya kesamaan tersebut menandakan ketiga metode ini berpotensi untuk diintegrasikan dalam rangka pengelolaan SDAL. Open data menyediakan beragam data dasar yang dapat diolah lebih lanjut untuk berbagai keperluan, misalnya citra satelit multi-spektral (Landsat, MODIS, CBERS, Sentinel), Synthetic Aperture Radar (SAR), Digital Elevation Model (DEM), jaringan jalan, batimetri, peta topografi (rupa bumi), polusi udara, kependudukan, kejahatan dan lain sebagainya (Samanta, et al, 2011;Dede, et al, 2017;Mohamed, 2017;. Di tangan pihak yang mampu melakukan beragam analisis konvensional dan spasial, open data dapat menghasilkan banyak data maupun informasi berharga untuk beragam keperluan pengambilan keputusan (Hu, et al, 2017;Rusli et al, 2014).…”
Section: Keterbatasan Integrasi Dan Solusinya Dalam Pengelolaan Sdalunclassified
“…The processing and analysis of these spatial data according to specific rules allows for a quantitative prediction of the distribution of soil forms or soil types within landscapes [11,12]. There are several previous studies that dealt with the topic of digital mapping and survey of the soil [3,5,[13][14][15][16][17][18][19][20][21][22][23].…”
Section: Introductionmentioning
confidence: 99%
“…Digital elevation models (DEMs) have also been increasingly used in recent years in geomorphological and pedological research [25]. Thus, soil-landform classifications based on geomorphometric parameters (digital terrain data) derived from DEMs are important inputs to map soil and to predict soil characteristics [3,10,19,23,[26][27][28][29][30][31][32]. From a geomorphological terms of view, quantified geomorphometric parameters can be understood as a continuous numeric description of the topographical surfaces or landforms.…”
Section: Introductionmentioning
confidence: 99%
“…Also, soil types in an area control the amount of water that can infiltrate into the soil which becomes as flow (Nicholls and Wong 1990). The soil distribution can be derived from the spectral characteristics of remotely sensed data based on its spectra (Boettinger et al 2008;Mohamed 2017). Several studies were conducted to map the soil distribution using IRS-1C, LISS III, and PAN data at 1:25,000 to 1:12,500 scales, which could be generated through the combination of these data (Kudrat et al 2000).…”
Section: Introductionmentioning
confidence: 99%