The mechanism for electric-field-induced segregation of additives, containing a polar group, in a host liquid crystal is proposed. It is shown that the polarity of an applied dc electric field, or the frequency of an ac electric field, strongly influences the segregation of reactive monomers containing an ester group. An explanation of this result is offered based on the association of dissolved ions with polar groups of the reactive monomers. This association is considered to cause these types of additives to drift to the cell surface in the presence of an external electric field. The described mechanism can be applied to the segregation of a broad range of additives in a liquid-crystal host.