Background
Peste des petits ruminants (PPR), foot-and-mouth disease (FMD) and sheep pox and goat pox are three important infectious diseases that infect goats, sheep and other small ruminants. It is well-known that the prevention of three diseases rely mainly on their individual vaccines. However, the vaccines have a variety of different disadvantages, such as short duration of immunity, increasing the number of vaccinations, and poor thermal stability. The purpose of this study is to construct a recombinant goat pox virus (rGPV) capable of expressing the F gene of PPRV and the P12A3C gene of FMDV as a live vector vaccine.
Results
The IRES, FMDV P12A3C and PPRV F genes into the multi-cloning site of the universal transfer plasmid pTKfpgigp to construct a recombinant transfer plasmid pTKfpgigpFiP12A3C, and transfected GPV-infected lamb testis (LT) cells with liposomes and produced by homologous recombination Recombinant GPV (rGPV/PPRVF-FMDVP12A3C, rGPV). The rGPV was screened and purified by green florescence protein (GFP) and xanthine-guanine-phosphoribosyltransferase gene (gpt) of Escherichia coli as selective markers, and the expression of rGPV in LT cells was detected by RT-PCR and immunofluorescence techniques. The results showed that the virus strain rGPV/PPRVF-FMDVP12A3C containing FMDV P12A3C and PPRV F genes was obtained. The exogenous genes FMDV P12A3C and PPRV F contained in rGPV were normally transcribed and translated in LT cells, and the expression products could specifically react with PPRV and FMDV antiserum. Then, the rGPV was intradermally inoculated with goats, the animal experiments showed that rGPV/PPRVF-FMDVP12A3C could induce high levels of specific antibodies against GPV, PPRV and FMDV.
Conclusions
The constructed rGPV induced high levels of specific antibodies against GPV, PPRV and FMDV. The study provides a reference for “ one vaccine with multiple uses “ of GPV live vector vaccine.