The geomagnetically induced current (GIC) produced during extreme geomagnetic storms can easily lead to large‐scale blackouts in China due to the increase in the scale of its electric power grid. A power grid's resilience is its capability to resist various natural hazards, withstand primary failures, and quickly resume normal operation. To avoid power grid damages, this study developed a resilient power grid, incorporating failure, power flow calculation and recovery models under a uniform induced geoelectric field. We chose a system's performance loss as the resilience evaluation indicator, which intuitively reflected a system's loss under GIC. In addition, the recovery model was optimized using a genetic algorithm, and two resilience improvement measures were proposed. The IEEE‐RTS‐79 system, consisting of 10 generators, 24 buses and 5 transformers, was chosen as an example to verify the feasibility of this study. The results show that the genetic algorithm and optimization measures effectively enhanced the system's resilience indicator and provided a reference for preventing system damages under GIC and quick recovery after possible failures.