Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid–solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration.