The main point of this paper is on the formulation of a numerical algorithm to find the location of all unstable poles, and therefore the characterization of the stability as a function of the delay, for a class of linear fractional-order neutral systems with multiple commensurate delays. We start by the asymptotic position of the chains of poles and conditions for their stability, for a small delay. When these conditions are met, we continue by means of the root continuity argument, and using a simple substitution, we can find all the locations where roots cross the imaginary axis. We can extend the method to provide the location of all unstable poles as a function of the delay. Before concluding, some examples are presented.