Saffron (Crocus sativus L.) is an important spice and medicinal plant that is cultivated in Asia, Europe, North Africa, and North America. Its morphological and biochemical parameters, such as the changes in the floral parts (six tepals, three stamens, three stigmata), biomass, and chlorophyll content, are primarily affected by environmental conditions. A polymerase chain reaction–rapid amplified polymorphic DNA (PCR‐RAPD) approach was used to analyze the extent of the polymorphisms between C. sativus genotypes grown in the Saudi climate. In this research study, the DNA fingerprints of the stigmata of C. sativus genotypes [K1 & K2 = C. sativus var. cashmerianus, C1 = C. sativus (nonmutant), T1 = mutant (T0‐2B), T2 = mutant (T1‐2B), T3 = mutant (T4‐2A)] were determined according to the floral parts, and a total of 10 decamer primers were used for PCR‐RAPD analysis. Only three pairs of arbitrary primers showed polymorphisms (33.3%–88.2%) in the total genomic DNA extracted from these genotypes. Jaccard's similarity index (JSI) ranged from 0.88 to 1.0. An unweighted pair group method with arithmetic mean (UPGMA) similarity and dendrogram matrix showed that two genotypes (T1‐2B and T4‐2A) were closely related to each other and to the strain CM‐cashmerianus, while the T0 of C. sativus genotype showed divergence.