Background
Epigenetics is crucial for connecting environmental stresses with physiological responses in humans. Mongolia, where nomadic livestock pastoralism has been the primal livelihood, has a higher prevalence of various chronic diseases than the surrounding East Asian regions, which are more suitable for crop farming. The genes related to dietary stress and pathogenesis of related disorders may have varying epigenetic statuses among the human populations with diverse dietary cultures. Hence, to understand such epigenetic differences, we conducted a comparative analysis of genome-wide DNA methylation of Mongolians and crop-farming East Asians.
Methods
Genome-wide DNA methylation status of peripheral blood cells (PBCs) from 23 Mongolian adults and 24 Thai adults was determined using the Infinium Human Methylation 450K arrays and analyzed in combination with previously published 450K data of 20 Japanese and 8 Chinese adults. CpG sites/regions differentially methylated between Mongolians and crop-farming East Asians were detected using a linear model adjusted for sex, age, ethnicity, and immune cell heterogeneity on RnBeads software.
Results
Of the quality-controlled 389,454 autosomal CpG sites, 223 CpG sites were significantly differentially methylated among Mongolians and the four crop farming East Asian populations (false discovery rate < 0.05). Analyses focused on gene promoter regions revealed that PM20D1 (peptidase M20 domain containing 1), which is involved in mitochondrial uncoupling and various processes, including cellular protection from reactive oxygen species (ROS) and thermogenesis, was the top differentially methylated gene. Moreover, gene ontology enrichment analysis revealed that biological processes related to ROS metabolism were overrepresented among the top 1% differentially methylated genes. The promoter regions of these genes were generally hypermethylated in Mongolians, suggesting that the metabolic pathway detoxifying ROS might be globally suppressed in Mongolians, resulting in the high susceptibility of this population to various chronic diseases.
Conclusions
This study showed a significantly diverse DNA methylation status among Mongolians and crop-farming East Asians. Further, we found an association between the differentially methylated genes and various metabolic and neurodegenerative diseases. Knowledge of the epigenetic regulators might help in proper understanding, treatment, and control of such disorders, and physiological adaptation in the future.