Experimental flutter testing of high-aspect ratio rotor blades is a mainstay of turbomachinery research. However, rotor blades are never identical, and geometrical errors between actual and nominal geometries exist due to limited machining precision or assembly imperfection. The paper presents the initial phase of the controlled flutter research of a linear turbine blade cascade with a geometric deviation in one blade position. A subsonic wind tunnel with four flexibly mounted blades in an otherwise rigid blade cascade is employed at one angle of incidence and three low reduced frequencies. Measurements are performed with an angular position deviation (±1.5°) of one blade in pure bending and torsion modes. A tangible effect of one blade’s slight incidence angle offset on the vibrating blade cascade aerodynamic stability is demonstrated, and this research effort opens the door to a more extensive testing campaign.