Conventional glow discharge emission or mass spectrometry requires the assumption that the surface of the sample is homogeneous. However, recent developments in glow discharge imaging appear to offer an opportunity to obtain three-dimensional concentration maps, in which this assumption is no longer necessary. Here, experiments, models, and a summary of earlier work are combined to examine the sputtering behavior of elemental and morphological heterogeneities in a sample. The theoretical model reveals gaps in current knowledge of glow discharge sputtering of heterogeneous samples, particularly indicating that heterogeneity in the sample leads to roughened crater bottoms and how additional morphology can evolve. Additionally, a three-dimensional profiling microscope is used to characterize the effects of surface inclusions on the sputtering process in a DC glow discharge in a reduced-pressure argon environment. Findings have important implications for bulk analysis, depthprofiling, and elemental surface mapping with glow discharge spectrometry.