Worldwide, anaerobic digestion for sanitation and utilization of the produced biogas as energy carrier have a long-standing history. Concomitantly, digested residues from biogas plants are utilized as valuable fertilizers in crop production. In Germany, guaranteed prices for electricity generated from renewable sources pushed the number of biogas plants from about 140 in 1992 to about 7,720 by the end of 2013, and the share of electricity supply from biogas close to 4.5%. In the midterm, biogas is given considerable potential to fill up the residual load from electricity generation based on wind and photovoltaic. In this review, we give an overview of the state-of-the-art of biogas technology for energy supply from agricultural inputs, based mainly on the situation in Germany. Focus is placed on the monitoring and control (M&C) of biogas plants as a means of meeting the growing demands for productivity and reliability of biogas supply. We summarize prominent factors for the stability and productivity of the anaerobic digestion (AD) process, and present latest findings about molecular biology tools, bioindicators, the 'metabolic quotient' and cDNA/DNA ratios for process analysis. In view of the large diversity of agricultural biogas installations, we discuss the cost-benefit ratio of M&C effort and equipment. In the light of the transformation of the energy system in Germany towards renewable sources ('Energiewende'), we give an outlook on prospects and concepts for the future role of biogas technology in agriculture and energy supply. We also address recent misguided developments, as the sustainable development of biogas technology in agriculture can only be realized within the ecological, economical, and social boundaries of underlying agro-ecological systems.Keywords: Agriculture; Biogas production; Process control; Engineering; Microbiology; Molecular biology; Early-warning; Energy supply on demand
ReviewThe most prominent beneficial features of the anaerobic digestion (AD) process are generation of biogas as a renewable energy carrier based on solar energy stored in biomass and hygienization of the input material during the treatment. Although it turns out from the following section that making use of hygienization is invaluable and has a long-standing history, the focus of this manuscript is on energy supply from biogas. The intent is to highlight the role of biogas production in a sustainable renewable energy framework in order to counteract consequences of the unsustainable resource management in the last century. Moreover, intensifying sustainable energy use has gained particular importance since the recent catastrophes with nuclear energy.This article builds on recent reviews by Weiland [1] and Braun et al. [2] on the state of biogas production in 2010, with emphasis on the development in Germany. In the last few years, the role of biogas as envisaged in the German renewable energy concept (see 'The role of biogas within the German energy supply system' section) has fuelled respective research a...